On the subcategories of n-torsionfree modules and related modules
نویسندگان
چکیده
Let R be a commutative noetherian ring. Denote by $${\textsf{mod }}\,R$$ the category of finitely generated R-modules. In this paper, we study n-torsionfree modules in sense Auslander and Bridger, comparing them with n-syzygy modules, satisfying Serre’s condition $$(\mathrm {S}_n)$$ . We mainly investigate closedness properties full subcategories consisting those modules.
منابع مشابه
dedekind modules and dimension of modules
در این پایان نامه، در ابتدا برای مدول ها روی دامنه های پروفر شرایط معادل به دست آورده ایم و خواصی از ددکیند مدول ها روی دامنه های پروفر مشخص کرده ایم. در ادامه برای ددکیند مدول های با تولید متناهی روی حلقه های به طور صحیح بسته شرایط معادل به دست آورده ایم و ددکیند مدول های ضربی را مشخص کرده ایم. گزاره هایی در مورد بعد ددکیند مدول ها بیان کرده ایم. در پایان، قضایای lying over و going down را برا...
15 صفحه اولClasses of Modules Related to Serre Subcategories
Let R be an associative ring with non-zero identity. For a Serre subcategory C of the category R-mod of left R-modules, we consider the class AC of all modules that do not belong to C, but all of their proper submodules belong to C. Alongside of basic properties of such associated classes of modules, we will prove that every uniform module of AC has a local endomorphism ring. Moreover, if R is ...
متن کاملClassifying Subcategories of Modules
Let R be the quotient of a regular coherent commutative ring by a finitely generated ideal. In this paper, we classify all abelian subcategories of finitely presented R-modules that are closed under extensions. We also classify abelian subcategories of arbitrary R-modules that are closed under extensions and coproducts, when R is commutative and Noetherian. The method relies on comparison with ...
متن کاملEXTENSION CLOSURE OF RELATIVE k-TORSIONFREE MODULES
Let be a ring. We use mod (resp. mod ) to denote the category of finitely generated left -modules (resp. right -modules). We always assume that and are Artinian algebras and is a faithfully balanced self-orthogonal bimodule, that is, satisfies the following conditions: (1) is in mod and is in mod ; (2) the natural maps → End op and → End are isomorphisms; (3) Ext = 0 and Ext = 0 for any i ≥ 1. ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Collectanea Mathematica
سال: 2021
ISSN: ['2038-4815', '0010-0757']
DOI: https://doi.org/10.1007/s13348-021-00338-1